Large hydraulic safety margins protect Neotropical canopy rainforest tree species against hydraulic failure during drought
نویسندگان
چکیده
منابع مشابه
Hydraulic patterns and safety margins, from stem to stomata, in three eastern U.S. tree species.
Adequate water transport is necessary to prevent stomatal closure and allow for photosynthesis. Dysfunction in the water transport pathway can result in stomatal closure, and can be deleterious to overall plant health and survival. Although much is known about small branch hydraulics, little is known about the coordination of leaf and stem hydraulic function. Additionally, the daily variations ...
متن کاملRelative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality caused by drought
Drought-induced tree mortality has been observed worldwide. Nevertheless, the physiological mechanisms underlying this phenomenon are still being debated. Potted Robinia pseudoacacia and Platycladus orientalis saplings were subjected to drought and their hydraulic failure and carbon starvation responses were studied. They underwent simulated fast drought (FD) and slow drought (SD) until death. ...
متن کاملThe dynamic pipeline: hydraulic capacitance and xylem hydraulic safety in four tall conifer species.
Recent work has suggested that plants differ in their relative reliance on structural avoidance of embolism versus maintenance of the xylem water column through dynamic traits such as capacitance, but we still know little about how and why species differ along this continuum. It is even less clear how or if different parts of a plant vary along this spectrum. Here we examined how traits such as...
متن کاملXylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance
1. The xylem pressure inducing 50% loss of hydraulic conductivity due to embolism (P50) is widely used for comparisons of xylem vulnerability among species and across aridity gradients. However, despite its utility as an index of resistance to catastrophic xylem failure under extreme drought, P50 may have no special physiological relevance in the context of stomatal regulation of daily minimum ...
متن کاملInterdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought
Hydraulic systems of plants have evolved in the context of carbon allocation and fitness tradeoffs of maximizing carbon gain and water transport in the face of short and long-term fluctuations in environmental conditions. The resulting diversity of traits include a continuum of isohydry-anisohydry or high to low relative stomatal closure during drought, shedding of canopy foliage or disconnecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Forest Science
سال: 2019
ISSN: 1286-4560,1297-966X
DOI: 10.1007/s13595-019-0905-0